
2416 

VISCOUS FLUID RESIDENCE TIME DISTRIBUTION AND 
CONVERSION IN CONTINUOUS STIRRED REACTOR 

P.ZALOUDIK 

Research Institute of Macromolecular Chemistry, 656 49 Brno 

Received October 12th, 1973 

Two single parameter characteristics of residence time distribution functions (RTD) of viscous 
fluid in a continuous stirred reactor (CSTR) were defined: X- the e normalized area between the 
real and ideal I(@) curves and Z* - the ratio of fractional conversions for a single first order 
reaction in a real and ideal CSTR. These parameters were evaluated for experimental RTD 
functions and the highest statistical significance was found for the following correlation of the 
parameter X: (1/Xl (1/n/) 112 = 0·0551 Re0

•
932 which applies to standard baffled cylindrical 

reactors with Rushton turbine (D = H, Djd = 3, h = Df2, nand t denote speed of the impeller 
and mean residence time, respectively) for Re < 20. It was further shown that nonideal RTD 
considerably decreases the actual relative degree of conversion especially at low values of Dam
kohler number Da < 1·0. A way of using the results for better prediction of conversions in non
ideal CSTR was suggested. 

The influence of the type of continuous reactor or the kind of mixing in the reactor 
on molecular weight distribution and therefore on the final properties of a polymer 
product was revealed by Denbigh 1 . There also was experience that the productivity 
of industrial continuous stirred reactors ( CSTR) often differs from the one precalcuiat
ed on the basis of ideal mixing. 

Recently some attention was paid to the ideality of mixing in continuous stirred 
tank reactors2

• It was learned from the literature and also from our preliminary 
experimental work that one could easily maintain ideal mixing conditions with low 
viscosity fluids. On the contrary, little information was found about the ideality 
of mixing in viscous fluids, e.g. for situations frequently encountered in continuous 
polymer production. 

It was believed that the study of macromixing in a CSTR using the residence time 
distribution (RTD) technique could be useful for better understanding of behaviour 
and better prediction of conversions in continuous reactors. 

Residence time distribution concept. Using the terminology of "macromixing" and "micro
mixing" introduced by Danckwerts3 it is necessary to point out that by the measuring RTD 
only macromixing phenomena can be studied. In an ideal CSTR perfect mixing is assumed, the 
consequence of which is that a ditferential volume of material just entering the reactor can appear 
at the next moment anywhere in the system. Therefore, also each element has finite probabilities 
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of exiting from the reactor and of staying inside for longer periods of time. To evaluate the 
above mentioned probabilities is one method of calculating an age distribution function. A simple 
solution of the problem for ideal CSTR is found elsewhere4

. 

It is easy to understand that when some of the functions J(t) , /( <3), F( <3), E( <3) are measured 
for a real system and compared with appropriate ideal ones, it is possible to decide whether 
the system deviates from an ideal one and to modify the design in such a way that the deviation 
diminishes. This approach has actually been realized in case of fluidized beds5

. 

Some typical features of distribution curves can be with confidence qualitatively interpreted 
in a specific way only if basic physical characteristics of the system are known . There exist charac
teristic shapes of /(<3) curves indicating e.g. plug flow or stagnant regions6 and it has also been 
pointed out that one type of distribution function may appear more sensitive in disclosing devia
tions of some kind, e:g. the intensity function was shown to have a typical shape for the system 
with stagnant zones and bypass 7 •8 • 

Characterization of RTD curves. For situations far from plug-flow two different approaches 
should be mentioned: characterization by a mixed model and characterization by a single para
meter. 

Mixed models have been given considerable attention recentil· 9 and computational tech
niques for their application to an experimental RTD curve have been described10

•
11

. Any practical 
situation can be handled that way and the point is to find out a well fitting, simple and realistic 
model of the system. 

Single parameter characterization of RTD curve is in a way an inefficient utilization of the 
effort expeded in obtaining R TD curve. On the other hand single parameter characteristics 
have often been used because of their simplicity and namely when it has been aimed at correlating 
the overall pattern of non ideal behaviour of CSTR with mixing parameters. 

In this work two new single parameter characteristics of RTD were defined: 

intergral mean deviation X 

(I) 

which represents the emax normalized area enclosed by real (I( e)) and ideal CSTR 
(Iii e)) age distributions and chosen limits; 

conversion index Z* 

(2) 

which represents the ratio of fractional conversions in real and ideal CSTR as cal
culated for single first order reaction at a specified Damkohler Group12 from cor
responding age distributions. 
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Both parameters Ll and Z* are dimensionless and dimensional analysis suggests 
that each of them should be correlated in geometrically similar vessels by the cor
relation 

(3) 

Reactor purging experiments believed to simulate well the ideal step method 
for RTD measurement9 were performed and the concentration of the tracer at the 
reactor exit was measured. 

Experiments were carried out in cylindrical vessels with flat bottom fitted with four 
vertical baffles. Rushton turbines (disc style of construction13

, wfd ~ 1/5, h = D/2) 
were used and it was complied with standard tank geometry (Dfd = 3, H = D). 
The apparatus was described in detail previously2

. 

RESULTS AND DISCUSSION 

Principal data for the above mentioned experiments are summarized in Table I 
and an example of age distribution curves measured is shown in Fig. 1. (Numerical 
I( e) values for all experiments fore = (0·0 7 0·5) and (0·5 7 3·0) in steps of 0·025 
and 0·1 respectively, are available 14

). 

Mixed model of our system consisting of one back-mixed region and a plug flow 

TABLE I 

The Summary of Experimental Conditions 

Exp. D H d /l t Re Ill X 
No em em em kgj ms RPM min 

10·80 10·80 3·60 0·740 505·0 8·5 19·89 4 292·5 0·0143 
2 10·80 10·80 3·60 1·066 505·0 24·5 13-81 12 372·5 0·0175 

10·80 10·80 3-60 0·954 250·0 4·3 7·64 1 089·9 0·1048 
10·80 10·80 3·60 0·820 250·0 11·9 8·89 2·974·9 0·0491 

10 10·80 10·80 3·60 0·575 85·0 8·3 4·31 709·7 0·1298 
13 10·80 10·80 3·60 0·650 82·0 50·5 3·67 4141 ·0 0·0665 
14 10·80 10·80 3·60 7·160 500·0 48·3 2·06 24 149·9 0·0720 
16 10·80 10·80 3·60 7·550 1 000·0 37·3 3·91 37 299·9 0·0333 
18 10·80 10·80 3·60 8·220 1 280·0 18·7 4·60 23 935·9 0·0233 
19 10·80 10·80 3·60 7·000 1 280·0 38·5 5·41 49 280·0 0·0159 
26 19·10 19·90 6·26 0·570 88·0 5·6 13·61 497·1 0·0600 
27 19·10 19·10 6·26 0·510 88·0 14·8 15·21 1 306·7 0·0432 
37 19·10 19·90 6·26 5·590 800·0 35·9 12·80 28 759·9 0·0139 
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TABLE II 

Conversion Index Z* for Various Da ((;d) Values 

Exp. 0·111 0·334 1·000 2·335 9·000 19·00 99·00 
"K 

No 0·100 0·250 0·500 0·700 0·900 0·95 0·99 

0·94337 0·94609 0·95218 0·95967 0·97566 0·98404 0·99565 0·0143 
0·92404 0·92547 0·93144 0·94323 0·96730 0·97588 0·98318 0·0175 
0·53382 0·55682 0·61704 0·70245 0·85069 0·91186 0·96026 0·1048 
0·92929 0·93988 0·96493 0·99406 1·03178 1·04194 1·03690 0·0491 

10 0-46935 0·50010 0·58257 0·70558 0·93332 0·99285 0·98469 0·1298 
13 0·67147 0·67983 0·70605 0·75379 0·87062 0·92009 0·94309 0·0665 
14 0·65280 0·67296 0·72117 0·78247 0·89441 0·94362 0·97456 0·0720 
16 0·83494 0·85158 0·89024 0·93560 0·99435 1-00347 0·98674 0·0333 
18 0·90265 0·91654 0·94692 0·97388 1·01501 1-01843 0·99843 0·0233 
19 0·89137 0·89693 0·90966 0·92493 0·95126 0·96117 0·96923 0·0159 
26 0·78978 0·79512 0·81972 0·87464 0·98959 1·00285 0·97091 0·0600 
27 0·81721 0·82297 0·84374 0·88443 0·96918 0·98717 0·97085 0·0432 
37 0·94408 0·95318 0·97353 0·995 25 1·01499 1·01401 0·99901 0·0139 

region in series with a common stagnant region parallel to it was proposed and rela-
tive sizes of "backmixed" and "stagnant" regions were correlated with dimension-
Jess 'Reynolds (Re < 20) and (ni) numbers2

, e.g. for the "stagnant" region the cor-
relation was: 

Vd/V = 0·771(Reto.6st (nlto .2B9 . 

FIG. I 

Experimental Age Distribution Functions 
1 Ideal CSTR, 2 exp.16, 3 exp.10. 
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Because it is impractical to measure the I( e) curve up to e = oo, some cutoff 
point Bmax must be chosen for any model evaluation. One realizes that Bmax also 
defines what is considered a stagnant zone, namely, any region of a reactor where 
the fluid stays longer than emax· These zones are ignored in age distribution analysis 
and thus - if conversion in a reactor is calculated using age distribution information 
- they do not contribute to it. If a real reactor is then compared with an ideal one 
we feel it fair to apply the same concept of stagnancy to both of them. Ideal CSTR 
should then be considered as the one having a stagnant region of 13·53% or 4·97% 
of its volume Vdepending whether Bmax was chosen 2·0 or 3·0, respectively. 

The values of Z* calculated for each age distribution at different values of Dam
kohler group for first order kinetics can be found in Table II. Actually our numerical 
calculating procedure followed the graphical method15 of the first order reaction 
conversion calculation using the F(t) curve (significant details are given in the Ap
pendix). 

A remarkable observation is that Z* = f((id) decreases rather sharply with de
creasing fractional conversion (see Table II, e.g. No 10 and 14), so that at lower 
fractional conversions ((id < 0·5) the values of Z* go down to (0·7 ...;- 0·5). But Z* 
values are significantly different from 1·0 even for experiments with rather small K 
(e.g. No 16). This suggests that one should be quite concerned about age distribution 
and perfectness of mixing in reactors, particularly those low fractional conversion 
(e.g. in a cascade ofCSTR). 

Parameters Z* were also correlated at one arbitrarily chosen conversion, e.g. for 
( id = 0· 5 the result was 

log (Z6.s) = -0·563 + 0·189log (Re) + 0·0843log (nt) ± 0·0407 (5) 

with K = 0·863 andf = 16·1 (ref. 16
•
17

). 

06 

9 
9 

FIG. 2 

Conversion Index Z* Against Integral Mean 
Deviation 11 

The scale for c!id = const. line intercepts 
is based on data from Table ll. Typical 
experimental data scatter is shown for eid 

equal o- 0·5 and e- 0·1. 

Collection Czochoslov. Chern . .Commun. (Vol. 391 (19741 



Fluid Residence Time Distribution 2421 

The second single parameter characteristics - compared to the others - is quite 
intuitive and can easily be applied to an age distribution curve. In addition to that 
it yields a remarkably significant correlation with Re and nt ( e max = 3·0 was chosen) : 

log (.11) = 0·972 + 0·8771og (1/Re) - 0·436log (nt) ± 0·0941 ; 

(K = 0·964, f = 73·1). (6) 

It was realized that correlations with Re as an independent variable were favoured 
in mixing and therefore one was attempted. Because the exponent of (nt) in Eq. (6) 
was not far from 0·5, the complex parameter (1/.11). (1/nt) 1

'
2 was correlated with Re 

with the result: 

log((1/.!1).(1/nt)1
'
2

) = -1·259 + 0·932log(Re) ± 0·0998 ; 

(K = 0·945, f = 100·7) . (7} 

Let us keep in mind that an important objective in reactor design is conversion 
prediction. To predict conversion for a single first order reaction (Da, Re and nf 
numbers must be known) using present work results one can use an equation analog
ous to Eq. (5) or to do the job in two steps: 1) to calculate .11 using Eq. ( 6) or (7); 2) to 
calculate Z* using that LS value and a correlation of Z* = f(LS) at the appropriate 
value of (;d (or Da) which can be obtained from data in Table II (e.g. for the dimen
sionless conversion (;d = 0·5 the correlation would be: log (Zri.s) = -0·365 - 0·198 
log (.11) ± 0·0374 ; (K = 0·875, f = 39·2)); it is also conveniently possible to inter
polate the needed value of Z* for (;d as a parameter and .11 in Fig. 2. 

It is finally emphasized that the suggested way of conversion prediction theoretically 
applies only for first order kinetics. Using a model of the system can not be avoided, 
if conversion is to be predicted for reaction orders different from one. Nevertheless 
it is believed that the correlations of our model parameters mentioned earlier can be 
helpful in handling such a situation, even if the calculations are lengthier and the 
result probably less reliable than in the case of first order kinetics. 

This work was partially carried out at the Faculty of Engineering Science, The University 
of Western Ontario, London, Canada. The author would like to thank the members of chemical eng
ineering group for their encouragement and the National Research Council of Canada for a gener
ous grant. 
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APPENDIX 

Calculation of Conversion in a CSTR when F(0) Curve is Known (1st Order Kinetics) 
The average degree of conversion in the exit stream .;A is obtained by integrating along the F 
coordinate: 

I
F=1 

.;A= 
0 

.;A(t) dF(t). 

After substituting the appropriate equation for the plug flow reactor and introducing dimension
less time e, one obtains for the relative degree of conversion ?;A: 

I
F max 

?;A = t 

0 

(1 - exp(-kt€7))dF(€7), 

where F rna~ is determined by em•~ chosen. The latter formula was used (or the definition of Z*. 

The conversion index Z* was evaluated by a simple computer program14 that calculated for 
the given I(€7) and Damkohler group both the numerator and the denominator of Eq. (2) by the 
.approximation : 

i=j 

?;A ft= L ((F(€7)}i - (F(€7))i_ 1) . (I - exp (-ki(ei + ei_ 1)/ 2·0)), 
i=2 

where €7 1 = 0; ei = ernax = 3·0 and F(€7) = I - l(€7). 

d 
D 
E 

f 
F 
h 

H 

LIST OF SYMBOLS 

concentration and initial concentration of the reactant expressed by their mass 
fractions 
impeller diameter (m) 
reactor diameter (m) 
exit age distribution function 
the value calculated for F-test of significance of multiple regression 
distribution function 
clearance of impeller of vessel bottom (m) 
liquid depth (m) 

l internal age distribution function 
k 151 order reaction velocity constant (s- 1) 

k ' = Vb/ Vp coefficient 
K multiple correlation coefficient 

impeller rotational speed (s- 1) 

volumetric flow rate (m3 s- 1) 

real time (age) (s) 
mean residence time (s) 
total volume of the vessel (m3

) 

volume of stagnant region (m3
) 

width of impeller blade (m) 
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Z* 
Da= kt 

conversion index 
Damkohler group (1st order reaction) 
Reynolds number Re = ud2 o/J.l 

"K integral mean deviation 
( 

e 
relative degree of conversion 
dimensionless time 

.; 
J1 

l! 
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